

ADVANCED SUBSIDIARY GCE MATHEMATICS

Mechanics 1

QUESTION PAPER

Candidates answer on the printed answer book.

OCR supplied materials:

- Printed answer book 4728
- List of Formulae (MF1)

Other materials required:

Scientific or graphical calculator

Monday 24 January 2011 Morning

4728

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the printed answer book and the question paper.

- The question paper will be found in the centre of the printed answer book.
- Write your name, centre number and candidate number in the spaces provided on the printed answer book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the printed answer book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by $g \text{ m s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

This information is the same on the printed answer book and the question paper.

- The number of marks is given in brackets [] at the end of each question or part question on the question paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- The printed answer book consists of **12** pages. The question paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER / INVIGILATOR

• Do not send this question paper for marking; it should be retained in the centre or destroyed.

2

- 1 Two particles P and Q are projected directly towards each other on a smooth horizontal surface. P has mass 0.5 kg and initial speed 2.4 m s^{-1} , and Q has mass 0.8 kg and initial speed 1.5 m s^{-1} . After a collision between P and Q, the speed of P is 0.2 m s^{-1} and the direction of its motion is reversed. Calculate
 - (i) the change in the momentum of *P*, [2]
 - (ii) the speed of Q after the collision.

2

Three horizontal forces of magnitudes *F* N, 8 N and 10 N act at a point and are in equilibrium. The *F* N and 8 N forces are perpendicular to each other, and the 10 N force acts at an obtuse angle $(90 + \alpha)^{\circ}$ to the *F* N force (see diagram). Calculate

(i)
$$\alpha$$
, [3]

3 A particle is projected vertically upwards with velocity 5 m s^{-1} from a point 2.5 m above the ground.

(i) Calculate the speed of the particle when it strikes the ground. [3]

- (ii) Calculate the time after projection when the particle reaches the ground. [3]
- (iii) Sketch on separate diagrams
 - (a) the (t, v) graph,
 - (b) the (t, x) graph,

representing the motion of the particle.

© OCR 2011

[4]

[4]

A block *B* of mass 0.8 kg and a particle *P* of mass 0.3 kg are connected by a light inextensible string inclined at 10° to the horizontal. They are pulled across a horizontal surface with acceleration 0.2 m s^{-2} , by a horizontal force of 2 N applied to *B* (see diagram).

- (i) Given that contact between B and the surface is smooth, calculate the tension in the string. [3]
- (ii) Calculate the coefficient of friction between P and the surface.

X is a point on a smooth plane inclined at θ° to the horizontal. Y is a point directly above the line of greatest slope passing through X, and XY is horizontal. A particle P is projected from X with initial speed 4.9 m s^{-1} down the line of greatest slope, and simultaneously a particle Q is released from rest at Y. P moves with acceleration 4.9 m s^{-2} , and Q descends freely under gravity (see diagram). The two particles collide at the point on the plane directly below Y at time T s after being set in motion.

- (i) (a) Express in terms of T the distances travelled by the particles before the collision. [3]
 - (b) Calculate θ . [2]
 - (c) Using the answers to parts (a) and (b), show that $T = \frac{2}{3}$. [3]
- (ii) Calculate the speeds of the particles immediately before they collide. [3]
- 6 The velocity $v \text{ m s}^{-1}$ of a particle at time *t* s is given by $v = t^2 9$. The particle travels in a straight line and passes through a fixed point *O* when t = 2.
 - (i) Find the displacement of the particle from O when t = 0. [4]
 - (ii) Calculate the distance the particle travels from its position at t = 0 until it changes its direction of motion. [6]
 - (iii) Calculate the distance of the particle from O when the acceleration of the particle is 10 m s^{-2} .

[5]

[7]

[Question 7 is printed overleaf.]

4

4

- 7 A particle *P* of mass 0.6 kg is projected up a line of greatest slope of a plane inclined at 30° to the horizontal. *P* moves with deceleration 10 m s^{-2} and comes to rest before reaching the top of the plane.
 - (i) Calculate the frictional force acting on P, and the coefficient of friction between P and the plane. [7]
 - (ii) Find the magnitude of the contact force exerted on P by the plane and the angle between the contact force and the upward direction of the line of greatest slope,
 - (a) when P is in motion, [5]
 - (b) when P is at rest. [2]

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Centre number	Candidate number	
---------------	------------------	--

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the printed answer book and the question paper.

- The guestion paper will be found in the centre of the printed answer book.
- Write your name, centre number and candidate number in the spaces provided on the printed answer book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the printed answer book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by $g \text{ m s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

This information is the same on the printed answer book and the question paper.

- The number of marks is given in brackets [] at the end of each question or part question on the question paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- The printed answer book consists of **12** pages. The question paper consists of **4** pages. Any blank pages are indicated.

1 (i)	
1 (ii)	

2 (i)	
2 (ii)	
3 (i)	

3 (ii)	
3(iii)(a)	
3(iii)(b)	
4 (i)	
• (1)	

4 (i)	(continued)
4 (ii)	

5(i)(a)	
5(i)(b)	

5(i)(c)	
- (11)	
5 (ii)	

6 (i)	
6 (ii)	

6 (ii)	(continued)
6 (iii)	

7 (i)	
·	
·	
·	

7(ii)(a)	

7(ii)(b)	

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.